你可能感兴趣的试题
光照强度为a时,造成曲线II和III光合作用强度差异的原因是CO2 浓度不同 光照强度为 b 时,造成曲线I.和 II光合作用强度差异的原因是温度不同 光照强度为a~b,曲线I.、II光合作用强度随光照强度升高而升高 光照强度为a~c,曲线I.、III光合作用强度随光照强度升高而升高
光照强度为a时,造成曲线II和III光合作用强度差异的原因是CO2浓度不同 光照强度为b时.造成曲线I和II光合作用强度差异的原因是温度不同 光照强度为a〜b,曲线I、II光合作用强度随光照强度升髙而升髙 光照强度为a〜c,曲线I、III光合作用强度随光照强度升高而升髙
光照强度为a时,造成曲线II和III光合作用强度差异的原因是CO2 浓度不同 光照强度为 b 时,造成曲线 I和 II光合作用强度差异的原因是温度的不同 光照强度为a~b,曲线 I、II光合作用强度随光照强度升高而升高 光照强度为a~c,曲线 I、III光合作用强度随光照强度升高而升高
光照强度为a时,造成曲线Ⅱ和Ⅲ光合作用强度差异的原因是CO2浓度不同 光照强度为b时,造成曲线I.和Ⅱ光合作用强度差异的原因是温度不同 光照强度为a~b,曲线I.、Ⅱ光合作用强度随光照强度升高而升高 光照强度为b~c,曲线Ⅱ、Ⅲ光合作用强度随光照强度升高而升高
光照强度为a时,造成曲线II和III光合作用强度差异的原因是CO2 浓度不同 光照强度为 b 时,透成曲线I.和 II光合作用强度差异的原因是温度不同 光照强度为a~b,曲线I.、II光合作用强度随光照强度升高而升高 光照强度为a~c,曲线I.、III光合作用强度随光照强度升高而升高
光照强度为a时,造成曲线Ⅱ和Ⅲ光合作用强度差异的原因是CO2浓度不同 光照强度为b时,造成曲线Ⅰ和Ⅱ光合作用强度差异的原因是温度不同 光照强度为a~b,曲线Ⅰ、Ⅱ光合作用强度随光照强度升高而升高 光照强度为a~c,曲线Ⅰ、Ⅲ光合作用强度随光照强度升高而升高
光照强度为a时,造成曲线 Ⅱ 和 Ⅲ 光合作用强度差异的原因是CO2 浓度不同 光照强度为 b 时,造成曲线Ⅰ和Ⅱ光合作用强度差异的原因是温度不同 光照强度为a~b时,曲线Ⅰ、Ⅱ光合作用强度随光照强度升高而升高 光照强度为a~c时,曲线Ⅰ、Ⅲ光合作用强度随光照强度升高而升高
光照强度为a时,造成曲线Ⅱ和Ⅲ光合作用强度差异的原因是CO2浓度不同 光照强度为b时,造成曲线Ⅰ和Ⅱ光合作用强度差异的原因是温度不同 光照强度为a~b时,曲线Ⅰ、Ⅱ光合作用强度随光照强度升高而升高 光照强度为a~c时,曲线Ⅰ、Ⅲ光合作用强度随光照强度升高而升高
光照强度为a时,造成曲线Ⅱ和Ⅲ光合作用强度差异的原因是CO2浓度不同 光照强度为b时,造成曲线I.和Ⅱ光合作用强度差异的原因是温度不同 光照强度为a~b,曲线I.、Ⅱ光合作用强度随光照强度升高而升高 光照强度为b~c,曲线Ⅱ、Ⅲ光合作用强度随光照强度升高而升高
光照强度为a时,造成曲线 Ⅱ 和 Ⅲ 光合作用强度差异的原因是CO2 浓度不同 光照强度为 b 时,造成曲线Ⅰ和Ⅱ光合作用强度差异的原因是温度不同 光照强度为a~b时,曲线Ⅰ、Ⅱ光合作用强度随光照强度升高而升高 光照强度为a~c时,曲线Ⅰ、Ⅲ光合作用强度随光照强度升高而升高
光照强度为a时,造成曲线II和III光合作用强度差异的原因是CO2 浓度不同 光照强度为 b 时,造成曲线I.和 II光合作用强度差异的原因是温度的不同 光照强度为a~b,曲线I.光合作用强度随光照强度升高而升高 光照强度为a~c,曲线I.、III光合作用强度随光照强度升高而升高玻璃瓶以外的叶片
光照强度为a时,造成曲线 Ⅱ 和 Ⅲ 光合作用强度差异的原因是CO2 浓度不同 光照强度为 b 时,造成曲线Ⅰ和Ⅱ光合作用强度差异的原因是温度不同 光照强度为a~b时,曲线Ⅰ、Ⅱ光合作用强度随光照强度升高而升高 光照强度为a~c时,曲线Ⅰ、Ⅲ光合作用强度随光照强度升高而升高
光照强度为a时,造成曲线II和III光合作用强度差异的原因是CO2 浓度不同 光照强度为 b 时,造成曲线 I和 II光合作用强度差异的原因是温度的不同 光照强度为a~b,曲线 I、II光合作用强度随光照强度升高而升高 光照强度为a~c,曲线 I、III光合作用强度随光照强度升高而升高
图1中甲、乙两品种小麦在较长时间连续阴雨的环境中,生长受到显著影响的是甲品种 图1中,超过8千勒克斯时,限制小麦两品种光合作用速度的环境因素主要是温度和二氧化碳浓度 从图2可知,限制P点、Q点金鱼耗O2量的主要环境因素分别是氧分压、温度 图2中,若用放射性同位素标记氧气,最先出现放射性的化合物是二氧化碳