当前位置: X题卡 > 所有题目 > 题目详情

单室模型静脉滴注给药达稳态前停止滴注血药浓度随时间变化的关系式为( )。

查看本题答案

你可能感兴趣的试题

logX=(-K/2.303)t+logX0  logC=(-K/2.303)t+logC0  logC′=(-K/2.303)t′+log(K0/VK)  logC′=(-K/2.303)t′+log[K0(1-e-KT)/VK]  C=K0(1-e-KT)/KV  
1个半衰期  2个半衰期  3个半衰期  4个半衰期  5个半衰期  
C=C0(1-e-kt)/Vk  logC’=(-k/2.303)t’+log(k0/Vk)  logC’=(一k/2.303)t’+log(k0(1-e-kt)/Vk  logC=(一k/2.303)t+logC0  logX=(一k/2.303)t+logX0  
单室模型静脉注射给药,1gC对t作图,得到直线的斜率为负值  单室模型静脉滴注给药,在滴注开始时可以静注一个负荷剂量,使血药浓度迅速达到或接近稳态浓度  单室模型口服给药,在血药浓度达峰瞬间,吸收速度等于消除速度  多剂量给药、血药浓度波动与药物半衰期,给药间隔时间有关  多剂量给药、相同给药间隔下、半衰期短的药物容易蓄积  
1个半衰期  2个半衰期  3个半衰期  4个半衰期  5个半衰期  
C=K0(1-e-kt)/VK  logC’=(-K/2.303)t’+log(K0/VK)  logC’=(-K/2.303)t’+log(K0(1-e-kt)/VK)  logC=(-K/2.303)t+logC0  logX=(-K/2.303)t+logX0  
logX=(-K/2.303)t+logX0  logC=(-K/2.303)t+logC0  logC′=(-K/2.303)t′+log(K0/VK)  logC′=(-K/2.303)t′+log[K0(1-e-KT)/VK]  C=K0(1-e-KT)/KV  
C=C0(1-e-kt)/Vk  logC’=(-k/2.303)t’+log(k0/Vk)  logC’=(一k/2.303)t’+log(k0(1-e-kt)/Vk  logC=(一k/2.303)t+logC0  logX=(一k/2.303)t+logX0  
logX=(-K/2.303)t+logX0  logC=(-K/2.303)t+logC0  logC′=(-K/2.303)t′+log(K0/VK)  logC′=(-K/2.303)t′+log[K0(1-e-KT)/VK]  C=K0(1-e-KT)/KV  
logX=(-K/2.303)t+logX0   10gC=(-K/2.303)t+logC0   logC′=(-K/2.303)t′+log(K0/VK)   10gC′=(-K/2.303)t′+log[K0(1-e-KT)/VK]   C=K0(1-e-Kt)/KV  
logX=(-K/2.303)t+logX0   10gC=(-K/2.303)t+logC0   logC′=(-K/2.303)t′+log(K0/VK)   10gC′=(-K/2.303)t′+log[K0(1-e-KT)/VK]   C=K0(1-e-Kt)/KV  
血药浓度达稳态后,加快滴注速率,血药浓度又会重新上升并趋于稳定  滴注开始时,药物的消除速率大于给药速率  滴注速率越大,达到稳态血药浓度的时间越短  达到稳态血药浓度的75%所需要的滴注时间是3个生物半衰期  可通过减漫滴注速率的方式降低药物的消除速率  
logX=(-K/2.303)t+logX0  10gC=(-K/2.303)t+logC0  logC′=(-K/2.303)t′+log(K0/VK)  10gC′=(-K/2.303)t′+log[K0(1-e-Kt)/VK]  C=K0(1-e-Kt)/KV  
C=k0(1-e-kt)/VK  logC’=(-k/2.303)t’+log(k0/VK)  logC’=(-k/2.303)t’+log[k0(1-e-kt)/VK]  logC(-k/2.303)t+logC0  logX=(-k/2.303)t+logX0  
C=K0(1-e-kt)/VK  logC’=(-K/2.303)t’+log(K0/VK)  logC’=(-K/2.303)t’+log(K0(1-e-KT)/VK)  logC=(-K/2.303)t+logC0  logX=(-K/2.303)t+logX0  
C=K0(1-e-kt)/VK  logC’=(-K/2.303)t’+log(K0/VK)  logC’=(-K/2.303)t’+log(K0(1-e-kt)/VK)  logC=(-K/2.303)t+logC0  logX=(-K/2.303)t+logX0  
C=K0(1-e-kt)/VK  logC’=(-K/2.303)t’+log(K0/VK)  logC’=(-K/2.303)t’+log(K0(1-e-KT)/VK)  logC=(-K/2.303)t+logC0  logX=(-K/2.303)t+logX0